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Background:  MSPA vs. OMSPA
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The Value Proposition

Why are MSPA and OMSPA important from the user missions’ 

perspective?

1) Enhanced Antenna Availability

• 4-MSPA for critical events where low-latency is important.

• OMSPA for routine science downlink. 

2) Reduced Antenna Scheduling Coordination

• OMSPA occurs outside the scheduling system; depends only on being in the beam of a 

scheduled spacecraft.

• No scheduling contention with other missions during OMSPA.

3) Reduced Aperture Fees

• While NASA missions do not actually pay these fees, they do factor into a mission’s 

bottom-line cost during the proposal phase.

• MSPA is currently offered at a reduced fee.

• While not yet decided, OMSPA would likely be offered at a reduced fee as well.
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Key Question:  OMSPA Applicability to 

EM-1-like Cubesat Deployments?

• We simulated an EM-1-like cubesat

deployment scenario involving 10 

cubesats in route to the moon.

• 3 DSN ground sites (Goldstone, 

Madrid, Canberra) and DSN affiliated

MSU antenna. 

• A single cubesat was ‘tracked’ and 

was always ‘in-beam’ (in center of 

main beam).

• Other cubesats began in the main 

beam while following their own 

trajectory.

• Our scenario did not include any 

TCMs.

• Receive antenna was modeled as a 

34m X-band antenna with 65dBi gain, 

while a 21m X-band antenna was 

modeled to have 60dBi gain.

• Each cubesat EIRP was assumed to 

be 10 dBW.

• Ground stations were assumed to 

have 33.5K noise temperature.



• An Iris MarCO waveform was recorded in lab:

– 48 KSPS (8 kbps data throughput)

– BPSK (Manchester/Bi-phase Coding)

– Turbo 1/6 Code [includes cyclic-redundancy-check (CRC) block]

• This waveform was synthesized to generate 10 signals from different 

sections of the recording.

• The cubesats were assigned non-overlapping frequencies:

– 8402.78, 8405, 8407, 8408, 8409.57, 8416.36, 8443.52, 8453, 8454, 8487 MHz. The Doppler shift 

from each cubesat’s motion was also taken into account.

– Synthesized signal covered 85 MHz.

• Received power at ground antenna a function of:

– Free-space Path-loss

– Antenna gain due to antenna pattern (60-65 dBi main-beam gain)

– Cubesat EIRP (10 dBW)

• Simulation results are sampled once every 2 hours during the 96 hour 

trajectory. The ground site with largest elevation angle > 7 degrees is chosen 

at each simulation time instant. 5

Simulating the Cubesat Waveforms
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Option 1: Channelized Recorder Option 2: Wideband Hardware Recorder

Option 2 was chosen for this simulation effort.
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Deciding the Receiver Architecture
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Synthesizing the Received Signal
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Architecting the Software Channelization
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parameters of each particular spacecraft. The software receiver for this IRIS waveform 

requires 8 seconds to process 10 seconds of raw data (1.25x faster than real-time).
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Frequency 
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navigation.
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Architecting the Software Receiver



• Out of the 10 

cubesats, 7 

remained in main 

beam for 

duration of 

simulation.

• Frame errors 

only occurred 

once a cubesat

completely 

exited beam.

• Even when 

cubesat 4 was 

slowly exiting  

beam at hours 

65-71, frames 

were saved by 

the powerful 

Turbo 1/6 code.
10

Simulation Results with Main Beam Only



• The main beam is modeled as having a width of ~1/10 degree.*

• Outside of the main beam, the first side-lobe is still relatively strong at only 20dB loss.

• Phase flips may occur at side-lobes, but the software receiver can be made to cope.

• Nulls are relatively narrow, and thus receiving cubesats through side-lobes is promising.
* Antenna pattern specification obtained from David D. Morabito <david.d.morabito@jpl.nasa.gov> and David P. Rochblatt

(333F) <david.j.rochblatt@jpl.nasa.gov>

Main Beam Only Main Beam with Side-lobes
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Modeling Tracking in the Side-lobes
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• In 96 hours, cubesat 10 

traveled furthest to the 

first side-lobe, which 

yielded about 17dB 

antenna gain loss. 

• Frame errors would 

occur when a cubesat is 

in very close to a null.
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Simulation Results with 

Main Beam and Side-lobes



• Cubesats 4 and 10 achieved 

approximately 40% and 87% 

reduction in dropped frames, 

respectively, due to the use of 

the first side-lobe for receiving 

of the data.

• Cubesats 4, 9, and 10 lost less 

than 4% of their total 

transmitted frames for the 

duration of the 96 hour 

simulation when side-lobes 

were utilized. Other cubesats

did not drop frames. 

• The benefit of the use of side-

lobes can also be realized by 

traditional DSN MSPA mode.
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Benefit of Side-Lobe Reception



• In practice, nulls are not infinitely deep.

• < 40dB attenuation up to +/- 0.5 degree offset. For near earth or lunar 

scenarios, this may be acceptable with powerful coding.
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Nulls in Practice

D. D. Morabito, W. Imbriale and S. Keihm, "Observing the Moon at Microwave Frequencies Using a Large-Diameter Deep Space 

Network Antenna,"in IEEE Transactions on Antennas and Propagation, vol. 56, no. 3, pp. 650-660, March 2008.
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• Opportunistic MSPA applied to an EM-1-like deployment scenario was 
simulated using a lab-collected Iris waveform.

• Antenna patterns, range, and antenna gain were incorporated to model 
received powers from different cubesats from the different ground stations 
(Goldstone, Canberra, Madrid, and MSU). 

• Over the first 96 hours of EM-1 scenario, with no TCMs, 7 of 10 cubesats
were successfully demodulated over the scenario time samples. 3 of 10 
cubesats experienced frame losses due to moving outside the main beam, 
not due to path-loss.

• Less than 4% of the total frames are lost when only the main lobe is utilized 
for the simulation duration. This is reduced to 1% of the total frames when 
side lobes are utilized for the 96 hour simulation duration.

– Outages tend to be brief as they only occur when a cubesat is very close to a null.

Conclusion:  OMSPA can be successfully applied to EM-1-like scenarios 
for downlink telemetry capture for the initial deployment period.
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Summary & Conclusion
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Thank You!
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BACKUP: Animation without Sidelobes

(2 hour sample interval)
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BACKUP: Animation with Sidelobes

(2 hour sample interval)
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BACKUP: Finely Sampled Simulation 

with Main Beam Only
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BACKUP: Finely Sampled Simulation 

with Sidelobes
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BACKUP: Animation without Sidelobes

(Finely sampled through interpolation)
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BACKUP: Animation with Sidelobes

(Finely sampled through interpolation)


